Book Image

Getting Started with Kubernetes, Second Edition - Second Edition

By : Jonathan Baier
Book Image

Getting Started with Kubernetes, Second Edition - Second Edition

By: Jonathan Baier

Overview of this book

Kubernetes has continued to grow and achieve broad adoption across various industries, helping you to orchestrate and automate container deployments on a massive scale. This book will give you a complete understanding of Kubernetes and how to get a cluster up and running. You will develop an understanding of the installation and configuration process. The book will then focus on the core Kubernetes constructs such as pods, services, replica sets, replication controllers, and labels. You will also understand how cluster level networking is done in Kubernetes. The book will also show you how to manage deployments and perform updates with minimal downtime. Additionally, you will learn about operational aspects of Kubernetes such as monitoring and logging. Advanced concepts such as container security and cluster federation will also be covered. Finally, you will learn about the wider Kubernetes ecosystem with OCP, CoreOS, and Tectonic and explore the third-party extensions and tools that can be used with Kubernetes. By the end of the book, you will have a complete understanding of the Kubernetes platform and will start deploying applications on it.
Table of Contents (20 chapters)
Title Page
Credits
About the Author
Acknowledgement
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Application scheduling


Now that we understand how to run containers in pods and even recover from failure, it may be useful to understand how new containers are scheduled on our cluster nodes.

As mentioned earlier, the default behavior for the Kubernetes scheduler is to spread container replicas across the nodes in our cluster. In the absence of all other constraints, the scheduler will place new pods on nodes with the least number of other pods belonging to matching services or replication controllers.

Additionally, the scheduler provides the ability to add constraints based on resources available to the node. Today, this includes minimum CPU and memory allocations. In terms of Docker, these use the CPU-shares and memory limit flags under the covers.

When additional constraints are defined, Kubernetes will check a node for available resources. If a node does not meet all the constraints, it will move to the next. If no nodes can be found that meet the criteria, then we will see a scheduling...