Book Image

Architecting Cloud Native Applications

By : Kamal Arora, Erik Farr, John Gilbert, Piyum Zonooz
Book Image

Architecting Cloud Native Applications

By: Kamal Arora, Erik Farr, John Gilbert, Piyum Zonooz

Overview of this book

Cloud computing has proven to be the most revolutionary IT development since virtualization. Cloud native architectures give you the benefit of more flexibility over legacy systems. This Learning Path teaches you everything you need to know for designing industry-grade cloud applications and efficiently migrating your business to the cloud. It begins by exploring the basic patterns that turn your database inside out to achieve massive scalability. You’ll learn how to develop cloud native architectures using microservices and serverless computing as your design principles. Then, you’ll explore ways to continuously deliver production code by implementing continuous observability in production. In the concluding chapters, you’ll learn about various public cloud architectures ranging from AWS and Azure to the Google Cloud Platform, and understand the future trends and expectations of cloud providers. By the end of this Learning Path, you’ll have learned the techniques to adopt cloud native architectures that meet your business requirements. This Learning Path includes content from the following Packt products: • Cloud Native Development Patterns and Best Practices by John Gilbert • Cloud Native Architectures by Erik Farr et al.
Table of Contents (24 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Always-on architectures


For many years, architects have always had two primary concerns: the availability of a given system and the recoverability of the system (often referred to as disaster recovery). These two concepts exist to address inherent qualities of a system deployed on a limited, on-premise infrastructure. In this on-premise infrastructure, there are a finite number of physical or virtual resources performing very specific functions or supporting a specific application. These applications are built in such a way that it negates the ability to run in a distributed manner across multiple machines. This paradigm means that the overall system has many single points of failure, whether it be a single network interface, a virtual machine or physical server, a virtual disk or volume, and so on.

Given these inherent fault points, architects developed two principle assessments to gauge the efficacy of a system. The systems' ability to remain running and perform its function is known as...