Book Image

Getting Started with Containerization

By : Dr. Gabriel N. Schenker, Hideto Saito, Hui-Chuan Chloe Lee, Ke-Jou Carol Hsu
Book Image

Getting Started with Containerization

By: Dr. Gabriel N. Schenker, Hideto Saito, Hui-Chuan Chloe Lee, Ke-Jou Carol Hsu

Overview of this book

Kubernetes is an open source orchestration platform for managing containers in a cluster environment. This Learning Path introduces you to the world of containerization, in addition to providing you with an overview of Docker fundamentals. As you progress, you will be able to understand how Kubernetes works with containers. Starting with creating Kubernetes clusters and running applications with proper authentication and authorization, you'll learn how to create high-availability Kubernetes clusters on Amazon Web Services (AWS), and also learn how to use kubeconfig to manage different clusters. Whether it is learning about Docker containers and Docker Compose, or building a continuous delivery pipeline for your application, this Learning Path will equip you with all the right tools and techniques to get started with containerization. By the end of this Learning Path, you will have gained hands-on experience of working with Docker containers and orchestrators, including SwarmKit and Kubernetes. This Learning Path includes content from the following Packt products: • Kubernetes Cookbook - Second Edition by Hideto Saito, Hui-Chuan Chloe Lee, and Ke-Jou Carol Hsu • Learn Docker - Fundamentals of Docker 18.x by Gabriel N. Schenker
Table of Contents (25 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

The container network model


So far, we have worked with single containers. But in reality, a containerized business application consists of several containers that need to collaborate to achieve a goal. Therefore, we need a way for individual containers to communicate with each other. This is achieved by establishing pathways that we can use to send data packets back and forth between containers. These pathways are called networks. Docker has defined a very simple networking model, the so-called container network model (CNM), to specify the requirements that any software that implements a container network has to fulfill. The following is a graphical representation of the CNM:

The Docker container network model

The CNM has three elements—sandbox, endpoint, and network:

  • Sandbox: The sandbox perfectly isolates a container from the outside world. No inbound network connection is allowed into the sandboxed container. Yet, it is very unlikely that a container will be of any value in a system if...