Book Image

Python Microservices Development

Book Image

Python Microservices Development

Overview of this book

We often deploy our web applications into the cloud, and our code needs to interact with many third-party services. An efficient way to build applications to do this is through microservices architecture. But, in practice, it's hard to get this right due to the complexity of all the pieces interacting with each other. This book will teach you how to overcome these issues and craft applications that are built as small standard units, using all the proven best practices and avoiding the usual traps. It's a practical book: you’ll build everything using Python 3 and its amazing tooling ecosystem. You will understand the principles of TDD and apply them. You will use Flask, Tox, and other tools to build your services using best practices. You will learn how to secure connections between services, and how to script Nginx using Lua to build web application firewall features such as rate limiting. You will also familiarize yourself with Docker’s role in microservices, and use Docker containers, CoreOS, and Amazon Web Services to deploy your services. This book will take you on a journey, ending with the creation of a complete Python application based on microservices. By the end of the book, you will be well versed with the fundamentals of building, designing, testing, and deploying your Python microservices.
Table of Contents (20 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Introduction

Docker-based deployments


Once you have microservices running inside containers, you need them to interact with each other. Since we are bridging the container sockets with some local sockets on the host, it is pretty transparent from an external client. Each host can have a public DNS or IP, and programs can simply use it to connect to the various services. In other words, a service deployed inside a container on host A can talk to a service deployed inside a container on host B ;as long as host A and B have a public address and expose the local sockets that are bridged with the containers sockets.

However, when two containers need to run on the same host, using the public DNS to make them interact with each other is less than optimal, particularly, if one of the containers is private to the host. For example, if you run a container in Docker for internal needs, like a caching service, its access should be restricted to the localhost.

To make this use case easier to implement, Docker provides...