Book Image

Python Microservices Development

Book Image

Python Microservices Development

Overview of this book

We often deploy our web applications into the cloud, and our code needs to interact with many third-party services. An efficient way to build applications to do this is through microservices architecture. But, in practice, it's hard to get this right due to the complexity of all the pieces interacting with each other. This book will teach you how to overcome these issues and craft applications that are built as small standard units, using all the proven best practices and avoiding the usual traps. It's a practical book: you’ll build everything using Python 3 and its amazing tooling ecosystem. You will understand the principles of TDD and apply them. You will use Flask, Tox, and other tools to build your services using best practices. You will learn how to secure connections between services, and how to script Nginx using Lua to build web application firewall features such as rate limiting. You will also familiarize yourself with Docker’s role in microservices, and use Docker containers, CoreOS, and Amazon Web Services to deploy your services. This book will take you on a journey, ending with the creation of a complete Python application based on microservices. By the end of the book, you will be well versed with the fundamentals of building, designing, testing, and deploying your Python microservices.
Table of Contents (20 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Introduction

Deploying with ECS


As described earlier in this chapter, ECS takes care of deploying Docker images automatically, and sets up all the services needed around the instances.

You do not need, in this case, to create EC2 instances yourself. ECS uses its own AMI, which is tweaked to run Docker containers on EC2. It is pretty similar to CoreOS, as it comes with a Docker daemon, but it is integrated with the AWS infrastructure for sharing configuration and triggering events.

An ECS cluster deployment is composed of many elements:

  • An Elastic Load Balancer (in EC2) to distribute the requests among the instance
  • A Task Definition, which is used to determine which Docker image needs to be deployed, and what ports should be bound between the host and the container
  • A Service, which uses the Task Definition to drive the creation of EC2 instances, and run the Docker container in them
  • A Cluster, which groups Services, Task Definitions, and an ELB

Deploying a cluster on ECS when you are not used to it is complex...