Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Training stability


Different methods are possible to improve stability during training. Online training, that is, training the model while playing the game, forgetting previous experiences, just considering the last one, is fundamentally unstable with deep neural networks: states that are close in time, such as the most recent states, are usually strongly similar or correlated, and taking the most recent states during training does not converge well.

To avoid such a failure, one possible solution has been to store the experiences in a replay memory or to use a database of human gameplays. Batching and shuffling random samples from the replay memory or the human gameplay database leads to more stable training, but off-policy training.

A second solution to improve stability is to fix the value of the parameter in the target evaluation for several thousands of updates of , reducing the correlations between the target and the Q-values:

It is possible to train more efficiently with n-steps Q-learning...