Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Deconvolutions for images


In the case of images, researchers have been looking for decoding operations acting as the inverse of the encoding convolutions.

The first application was the analysis and understanding of convolutional networks, as seen in Chapter 2, Classifying Handwritten Digits with a Feedforward Network, composed of convolutional layers, max-pooling layers and rectified linear units. To better understand the network, the idea is to visualize the parts of an image that are most discriminative for a given unit of a network: one single neuron in a high level feature map is left non-zero and, from that activation, the signal is retro-propagated back to the 2D input.

To reconstruct the signal through the max pooling layers, the idea is to keep track of the position of the maxima within each pooling region during the forward pass. Such architecture, named DeConvNet can be shown as:

Visualizing and understanding convolutional networks

The signal is retro-propagated to the position that...