Book Image

Learning JavaScript Data Structures and Algorithms - Third Edition

Book Image

Learning JavaScript Data Structures and Algorithms - Third Edition

Overview of this book

A data structure is a particular way of organizing data in a computer to utilize resources efficiently. Data structures and algorithms are the base of every solution to any programming problem. With this book, you will learn to write complex and powerful code using the latest ES 2017 features. Learning JavaScript Data Structures and Algorithms begins by covering the basics of JavaScript and introduces you to ECMAScript 2017, before gradually moving on to the most important data structures such as arrays, queues, stacks, and linked lists. You will gain in-depth knowledge of how hash tables and set data structures function as well as how trees and hash maps can be used to search files in an HD or represent a database. This book serves as a route to take you deeper into JavaScript. You’ll also get a greater understanding of why and how graphs, one of the most complex data structures, are largely used in GPS navigation systems in social networks. Toward the end of the book, you’ll discover how all the theories presented in this book can be applied to solve real-world problems while working on your own computer networks and Facebook searches.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
Index

The binary and binary search trees


A node in a binary tree has two children at most: one left child and one right child. This definition allows us to write more efficient algorithms to insert, search, and delete nodes to/from a tree. Binary trees are largely used in computer science.

A binary search tree (BST) is a binary tree, but it only allows you to store nodes with lesser values on the left-hand side and nodes with greater values on the right-hand side. The diagram in the previous topic exemplifies a binary search tree.

This will be the data structure that we will work on in this chapter.

Creating the Node and BinarySearchTree classes

Let’s start by creating our Node class that will represent each node of our binary search tree using the following code:

export class Node {
  constructor(key) {
    this.key = key; // {1} node value
    this.left = null; // left child node reference
    this.right = null; // right child node reference
  }
}

The following diagram exemplifies how a binary search...