Book Image

Mastering C# and .NET Framework

Book Image

Mastering C# and .NET Framework

Overview of this book

Mastering C# and .NET Framework will take you in to the depths of C# 6.0/7.0 and .NET 4.6, so you can understand how the platform works when it runs your code, and how you can use this knowledge to write efficient applications. Take full advantage of the new revolution in .NET development, including open source status and cross-platform capability, and get to grips with the architectural changes of CoreCLR. Start with how the CLR executes code, and discover the niche and advanced aspects of C# programming – from delegates and generics, through to asynchronous programming. Run through new forms of type declarations and assignments, source code callers, static using syntax, auto-property initializers, dictionary initializers, null conditional operators, and many others. Then unlock the true potential of the .NET platform. Learn how to write OWASP-compliant applications, how to properly implement design patterns in C#, and how to follow the general SOLID principles and its implementations in C# code. We finish by focusing on tips and tricks that you'll need to get the most from C# and .NET. This book also covers .NET Core 1.1 concepts as per the latest RTM release in the last chapter.
Table of Contents (21 chapters)
Mastering C# and .NET Framework
Credits
About the Author
Acknowledgements
About the Reviewer
www.PacktPub.com
Preface
Index

Languages: strongly typed, weakly typed, dynamic, and static


The C# language is a strongly typed language: this means that any attempt to pass a wrong kind of parameter as an argument, or to assign a value to a variable that is not implicitly convertible, will generate a compilation error. This avoids many errors that only happen at runtime in other languages.

In addition, by dynamic, we mean those languages whose rules are applied at runtime, while static languages apply their rules at compile time. JavaScript or PHP are good examples of the former case, and C/C++ of the latter. If we make a graphic representation of this situation, we might come up with something like what is shown in the following figure:

In the figure, we can see that C# is clearly strongly typed, but it's much more dynamic than C++ or Scala, to mention a few. Of course, there are several criteria to catalog languages for their typing (weak versus strong) and for their dynamism (dynamic versus static).

Note that this has...