Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Dropout for RNN


The application of dropout inside neural networks has long been a subject of research, since the naïve application of dropout to the recurrent connection introduced lots more instability and difficulties to training the RNN.

A solution has been discovered, derived from the variational Bayes Network theory. The resulting idea is very simple and consists of preserving the same dropout mask for the whole sequence on which the RNN is training, as shown in the following picture, and generating a new dropout mask at each new sequence:

Such a technique is called variational RNN. For the connections that have the same arrows in the preceding figure, we'll keep the noise mask constant for the all sequence.

For that purpose, we'll introduce the symbolic variables _is_training and _noise_x to add a random (variational) noise (dropout) to input, output, and recurrent connection during training:

_is_training = T.iscalar('is_training')
_noise_x = T.matrix('noise_x')
inputs = apply_dropout...