Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Summary


The spatial transformer layer is an original module to localize an area of the image, crop it and resize it to help the classifier focus on the relevant part in the image, and increase its accuracy. The layer is composed of differentiable affine transformation, for which the parameters are computed through another model, the localization network, and can be learned via backpropagation as usual.

An example of the application to reading multiple digits in an image can be inferred with the use of recurrent neural units. To simplify our work, the Lasagne library was introduced.

Spatial transformers are one solution among many others for localizations; region-based localizations, such as YOLO, SSD, or Faster RCNN, provide state-of-the-art results for bounding box prediction.

In the next chapter, we'll continue with image recognition to discover how to classify full size images that contain a lot more information than digits, such as natural images of indoor scenes and outdoor landscapes...