Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Improving efficiency of sequence-to-sequence network


A first interesting point to notice in the chatbot example is the reverse ordered input sequence: such a technique has been shown to improve results.

For translation, it is very common then to use a bidirectional LSTM to compute the internal state as seen in Chapter 5, Analyzing Sentiment with a Bidirectional LSTM: two LSTMs, one running in the forward order, the other in the reverse order, run in parallel on the sequence, and their outputs are concatenated:

Such a mechanism captures better information given future and past.

Another technique is the attention mechanism that will be the focus of the next chapter.

Lastly, refinement techniques have been developed and tested with two-dimensional Grid LSTM, which are not very far from stacked LSTM (the only difference is a gating mechanism in the depth/stack direction):

Grid long short-term memory

The principle of refinement is to run the stack in both orders on the input sentence as well, sequentially...