Book Image

Deep Learning with Theano

By : Christopher Bourez
Book Image

Deep Learning with Theano

By: Christopher Bourez

Overview of this book

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU. The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy. The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym. At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.
Table of Contents (22 chapters)
Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Summary


As for love, head-to-toe positions provide exciting new possibilities: encoder and decoder networks use the same stack of layers but in their opposite directions.

Although it does not provide new modules to deep learning, such a technique of encoding-decoding is quite important because it enables the training of the networks 'end-to-end', that is, directly feeding the inputs and corresponding outputs, without specifying any rules or patterns to the networks and without decomposing encoding training and decoding training into two separate steps.

While image classification was a one-to-one task, and sentiment analysis a many-to-one task, encoding-decoding techniques illustrate many-to-many tasks, such as translation or image segmentation.

In the next chapter, we'll introduce an attention mechanism that provides the ability for encoder-decoder architecture to focus on some parts of the input in order to produce a more accurate output.