Book Image

Spring 5.0 Microservices - Second Edition

By : Rajesh R V
Book Image

Spring 5.0 Microservices - Second Edition

By: Rajesh R V

Overview of this book

The Spring Framework is an application framework and inversion of the control container for the Java platform. The framework’s core features can be used by any Java application, but there are extensions to build web applications on top of the Java EE platform. This book will help you implement the microservice architecture in Spring Framework, Spring Boot, and Spring Cloud. Written to the latest specifications of Spring that focuses on Reactive Programming, you’ll be able to build modern, internet-scale Java applications in no time. The book starts off with guidelines to implement responsive microservices at scale. Next, you will understand how Spring Boot is used to deploy serverless autonomous services by removing the need to have a heavyweight application server. Later, you’ll learn how to go further by deploying your microservices to Docker and managing them with Mesos. By the end of the book, you will have gained more clarity on the implementation of microservices using Spring Framework and will be able to use them in internet-scale deployments through real-world examples.
Table of Contents (11 chapters)

Principles of microservices


In this section, we will examine some of the principles of the microservices architecture. These principles are a must have when designing and developing microservices. The two key principles are single responsibility and autonomous.

Single responsibility per service

The single responsibility principle is one of the principles defined as part of the SOLID design pattern. It states that a unit should only have one responsibility.

Note

Read more about the SOLID design pattern at http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign.

It implies that a unit, either a class, a function, or a service, should have only one responsibility. At no point do two units share one responsibility, or one unit perform more than one responsibility. A unit with more than one responsibility indicates tight coupling:

As shown in the preceding diagram, Customer, Product, and Order are different functions of an e-commerce application. Rather than building all of them into one application, it is better to have three different services, each responsible for exactly one business function, so that changes to one responsibility will not impair the others. In the preceding scenario, Customer, Product, and Order were treated as three independent microservices.

Microservices are autonomous

Microservices are self-contained, independently deployable, and autonomous services that take full responsibility of a business capability and its execution. They bundle all dependencies including the library dependencies; execution environments, such as web servers and containers; or virtual machines that abstract the physical resources.

One of the major differences between microservices and SOA is in its level of autonomy. While most of the SOA implementations provide the service-level abstraction, microservices go further and abstract the realization and the execution environment.

In traditional application developments, we build a war or a ear, then deploy it into a JEE application server, such as JBoss, Weblogic, WebSphere, and more. We may deploy multiple applications into the same JEE container. In the microservices approach, each microservice will be built as a fat jar embedding all dependencies and run as a standalone Java process:

Microservices may also get their own containers for execution, as shown in the preceding diagram. Containers are portable, independently manageable, and lightweight runtime environments. Container technologies, such as Docker, are an ideal choice for microservices deployments.