Book Image

Hands-On Microservices with Spring Boot and Spring Cloud

By : Magnus Larsson
Book Image

Hands-On Microservices with Spring Boot and Spring Cloud

By: Magnus Larsson

Overview of this book

Microservices architecture allows developers to build and maintain applications with ease, and enterprises are rapidly adopting it to build software using Spring Boot as their default framework. With this book, you’ll learn how to efficiently build and deploy microservices using Spring Boot. This microservices book will take you through tried and tested approaches to building distributed systems and implementing microservices architecture in your organization. Starting with a set of simple cooperating microservices developed using Spring Boot, you’ll learn how you can add functionalities such as persistence, make your microservices reactive, and describe their APIs using Swagger/OpenAPI. As you advance, you’ll understand how to add different services from Spring Cloud to your microservice system. The book also demonstrates how to deploy your microservices using Kubernetes and manage them with Istio for improved security and traffic management. Finally, you’ll explore centralized log management using the EFK stack and monitor microservices using Prometheus and Grafana. By the end of this book, you’ll be able to build microservices that are scalable and robust using Spring Boot and Spring Cloud.
Table of Contents (26 chapters)
Title Page

Using Docker with one microservice

Now that we understand how Java works, we can start using Docker with one of our microservices. Before we can run our microservice as a Docker container, we need to package it in a Docker image. To build a Docker image, we need a Dockerfile, so we will start with that. Next, we need a Docker-specific configuration for our microservice. Since a microservice that runs in a container is isolated from other microservices, for example, has its own IP address, hostname, and ports, it needs a different configuration compared to when it's running on the same host with other microservices. For example, since the other microservices no longer run on the same host, no port conflicts will occur. When running in Docker, we can use the default port 8080 for all our microservices without any risk of port conflicts. On the other hand, if we need...