Book Image

Mastering Quantum Computing with IBM QX

By : Dr. Christine Corbett Moran
Book Image

Mastering Quantum Computing with IBM QX

By: Dr. Christine Corbett Moran

Overview of this book

<p>Quantum computing is set to disrupt the industry. IBM Research has made quantum computing available to the public for the first time, providing cloud access to IBM QX from any desktop or mobile device. Complete with cutting-edge practical examples, this book will help you understand the power of quantum computing in the real world.</p> <p>Mastering Quantum Computing with IBM QX begins with the principles of quantum computing and the areas in which they can be applied. You'll explore the IBM Ecosystem, which enables quantum development with Quantum Composer and Qiskit. As you progress through the chapters, you'll implement algorithms on the quantum processor and learn how quantum computations are actually performed.</p> <p>By the end of the book, you will completely understand how to create quantum programs of your own, the impact of quantum computing on your business, and how to future-proof your programming career.</p>
Table of Contents (22 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Quantum errors


Quantum computers interact with the environment through decoherence, resulting in information from a computation degrading over time. This introduces errors into a computation. In Chapter 3Quantum States, Quantum Registers, and Measurement, we discussed ways to quantify this information loss; T1 helps quantify how quickly the qubits on a given hardware experience energy loss due to environment interaction (energy loss results in a change in frequency, causing decoherence), which can cause a bit flip, and T2 helps quantifyhow quickly the qubits experience a phase difference due to interaction with the environment, again a cause of decoherence. The bigger T1 and T2, the more robust a quantum computation will be to errors.

 IBM QX hardware and other quantum computing companies try to raise T1 and, T2 but at the present moment, and for the foreseeable future, T1 and, T2 are so low that every practical computation is likely to contain errors. These errors can come in the form...