Book Image

Python Reinforcement Learning

By : Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo
Book Image

Python Reinforcement Learning

By: Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: • Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran • Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani
Table of Contents (27 chapters)
Title Page
About Packt
Contributors
Preface
Index

Applications of RL


With greater advancements and research, RL has rapidly evolved everyday applications in several fields ranging from playing computer games to automating a car. Some of the RL applications are listed in the following sections.

Education

Many online education platforms are using RL for providing personalized content for each and every student. Some students may learn better from video content, some may learn better by doing projects, and some may learn better from notes. RL is used to tune educational content personalized for each student according to their learning style and that can be changed dynamically according to the behavior of the user.

Medicine and healthcare

RL has endless applications in medicine and health care; some of them include personalized medical treatment, diagnosis based on a medical image, obtaining treatment strategies in clinical decision making, medical image segmentation, and so on.

Manufacturing

In manufacturing, intelligent robots are used to place objects in the right position. If it fails or succeeds in placing the object at the right position, it remembers the object and trains itself to do this with greater accuracy. The use of intelligent agents will reduce labor costs and result in better performance.

Inventory management

RL is extensively used in inventory management, which is a crucial business activity. Some of these activities include supply chain management, demand forecasting, and handling several warehouse operations (such as placing products in warehouses for managing space efficiently). Google researchers in DeepMind have developed RL algorithms for efficiently reducing the energy consumption in their own data center.

Finance

RL is widely used in financial portfolio management, which is the process of constant redistribution of a fund into different financial products and also in predicting and trading in commercial transactions markets. JP Morgan has successfully used RL to provide better trade execution results for large orders. 

Natural Language Processing and Computer Vision

With the unified power of deep learning and RL, Deep Reinforcement Learning (DRL) has been greatly evolving in the fields of Natural Language Processing (NLP) and Computer Vision (CV). DRL has been used for text summarization, information extraction, machine translation, and image recognition, providing greater accuracy than current systems.