Book Image

Python Reinforcement Learning

By : Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo
Book Image

Python Reinforcement Learning

By: Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: • Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran • Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani
Table of Contents (27 chapters)
Title Page
About Packt
Contributors
Preface
Index

Chapter 19. Capstone Project - Car Racing Using DQN

In the last few chapters, we have learned how Deep Q learning works by approximating the q function with a neural network. Following this, we have seen various improvements to Deep Q Network (DQN) such as Double Q learning, dueling network architectures, and the Deep Recurrent Q Network. We have seen how DQN makes use of a replay buffer to store the agent's experience and trains the network with the mini-batch of samples from the buffer. We have also implemented DQNs for playing Atari games and a Deep Recurrent Q Network (DRQN) for playing the Doom game. In this chapter, let's get into the detailed implementation of a dueling DQN, which is essentially the same as a regular DQN, except the final fully connected layer will be broken down into two streams, namely a value stream and an advantage stream, and these two streams will be clubbed together to compute the Q function. We will see how to train an agent for winning the car racing game...