Book Image

Python Reinforcement Learning

By : Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo
Book Image

Python Reinforcement Learning

By: Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: • Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran • Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani
Table of Contents (27 chapters)
Title Page
About Packt
Contributors
Preface
Index

Chapter 9. Playing Doom with a Deep Recurrent Q Network

In the last chapter, we saw how to build an agent using a Deep Q Network (DQN) in order to play Atari games. We have taken advantage of neural networks for approximating the Q function, used the convolutional neural network (CNN) to understand the input game screen, and taken the past four game screens to better understand the current game state. In this chapter, we will learn how to improve the performance of our DQN by taking advantage of the recurrent neural network (RNN). We will also look at what is partially observable with the Markov Decision Process (MDP) and how we can solve that using a Deep Recurrent Q Network (DRQN). Following this, we will learn how to build an agent to play the game Doom using a DRQN. Finally, we will see a variant of DRQN called Deep Attention Recurrent Q Network (DARQN), which augments the attention mechanism to the DRQN architecture. 

In this chapter, you will learn the following topics:

  • DRQN
  • Partially...