Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By : Cyrille Rossant
Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (19 chapters)
IPython Interactive Computing and Visualization CookbookSecond Edition
Contributors
Preface
Index

Using a random forest to select important features for regression


Decision trees are frequently used to represent workflows or algorithms. They also form a method for nonparametric supervised learning. A tree mapping observations to target values is learned on a training set and gives the outcomes of new observations.

Random forests are ensembles of decision trees. Multiple decision trees are trained and aggregated to form a model that is more performant than any of the individual trees. This general idea is the purpose of ensemble learning.

There are many types of ensemble methods. Random forests are an instance of bootstrap aggregating, also called bagging, where models are trained on randomly drawn subsets of the training set.

Random forests yield information about the importance of each feature for the classification or regression task. In this recipe, we will find the most influential features of Boston house prices using a classic dataset that contains a range of diverse indicators...