Book Image

Neural Networks with R

By : Balaji Venkateswaran, Giuseppe Ciaburro
Book Image

Neural Networks with R

By: Balaji Venkateswaran, Giuseppe Ciaburro

Overview of this book

Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you’ll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book.
Table of Contents (14 chapters)
Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Feed-forward and feedback networks


The flow of the signals in neural networks can be either in only one direction or in recurrence. In the first case, we call the neural network architecture feed-forward, since the input signals are fed into the input layer, then, after being processed, they are forwarded to the next layer, just as shown in the following figure. MLPs and radial basis functions are also good examples of feed-forward networks. In the following figure is shown an MLPs architecture:

When the neural network has some kind of internal recurrence, meaning that the signals are fed back to a neuron or layer that has already received and processed that signal, the network is of the type feedback, as shown in the following image:

The special reason to add recurrence in a network is the production of a dynamic behavior, particularly when the network addresses problems involving time series or pattern recognition, that require an internal memory to reinforce the learning process. However, such networks are particularly difficult to train, eventually failing to learn. Most of the feedback networks are single layer, such as the Elman and Hopfield networks, but it is possible to build a recurrent multilayer network, such as echo and recurrent MLP networks.