Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Neural Networks with R
  • Table Of Contents Toc
Neural Networks with R

Neural Networks with R

By : Balaji Venkateswaran, Giuseppe Ciaburro
4 (10)
close
close
Neural Networks with R

Neural Networks with R

4 (10)
By: Balaji Venkateswaran, Giuseppe Ciaburro

Overview of this book

Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you’ll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book.
Table of Contents (8 chapters)
close
close

Supervised learning

Supervised learning is a learning method where there is a part of the training data which acts as a teacher to the algorithm to determine the model. The machine is taught what to learn from the target data. The target data, or dependent or response variables, are the outcome of the collective action of the independent variables. The network training is done with the target data and its behavior with patterns of input data. The target labels are known in advance and the data is fed to the algorithm to derive the model.

Most of neural network usage is done using supervised learning. The weights and biases are adjusted based on the output values. The output can be categorical (like true/false or 0/1/2) or continuous (like 1,2,3, and so on). The model is dependent on the type of output variables, and in the case of neural networks, the output layer is built on...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Neural Networks with R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon