Book Image

Java: Data Science Made Easy

By : Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Book Image

Java: Data Science Made Easy

By: Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Overview of this book

Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this course, we cover the basic as well as advanced data science concepts and how they are implemented using the popular Java tools and libraries.The course starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. You will examine the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. Throughout this course, the chapters will illustrate a challenging data science problem, and then go on to present a comprehensive, Java-based solution to tackle that problem. You will cover a wide range of topics – from classification and regression, to dimensionality reduction and clustering, deep learning and working with Big Data. Finally, you will see the different ways to deploy the model and evaluate it in production settings. By the end of this course, you will be up and running with various facets of data science using Java, in no time at all. This course contains premium content from two of our recently published popular titles: - Java for Data Science - Mastering Java for Data Science
Table of Contents (29 chapters)
Title Page
Credits
Preface
Free Chapter
1
Module 1
15
Module 2
26
Bibliography

Understanding static neural networks


Static neural networks are ANNs that undergo a training or learning phase and then do not change when they are used. They differ from dynamic neural networks, which learn constantly and may undergo structural changes after the initial training period. Static neural networks are useful when the results of a model are relatively easy to reproduce or are more predictable. We will look at dynamic neural networks in a moment, but we will begin by creating our own basic static neural network.

A basic Java example

Before we examine various libraries and tools available for constructing neural networks, we will implement our own basic neural network using standard Java libraries. The next example is an adaptation of work done by Jeff Heaton (http://www.informit.com/articles/article.aspx?p=30596). We will construct a feed-forward backpropagation neural network and train it to recognize the XOR operator pattern. Here is the basic truth table for XOR:

X

Y

Result

0

0

0

0

1...