Book Image

Java: Data Science Made Easy

By : Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Book Image

Java: Data Science Made Easy

By: Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Overview of this book

Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this course, we cover the basic as well as advanced data science concepts and how they are implemented using the popular Java tools and libraries.The course starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. You will examine the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. Throughout this course, the chapters will illustrate a challenging data science problem, and then go on to present a comprehensive, Java-based solution to tackle that problem. You will cover a wide range of topics – from classification and regression, to dimensionality reduction and clustering, deep learning and working with Big Data. Finally, you will see the different ways to deploy the model and evaluate it in production settings. By the end of this course, you will be up and running with various facets of data science using Java, in no time at all. This course contains premium content from two of our recently published popular titles: - Java for Data Science - Mastering Java for Data Science
Table of Contents (29 chapters)
Title Page
Credits
Preface
Free Chapter
1
Module 1
15
Module 2
26
Bibliography

Chapter 9. Deep Learning

In this chapter, we will focus on neural networks, often referred to as Deep Learning Networks (DLNs). This type of network is characterized as a multiple-layer neural network. Each of these layers are rained on the output of the previous layer, potentially identifying features and sub-features of the dataset. A feature hierarchy is created in this manner.

DLNs typically work with unstructured and unlabeled data, which constitute the vast bulk of data found in the world today. DLN will take this unstructured data, identify features, and try to reconstruct the original input. This approach is illustrated with Restricted Boltzmann Machines (RBMs) in Restricted Boltzmann Machines and with autoencoders in Deep autoencoders. An autoencoder takes a dataset and effectively compresses it. It then decompresses it to reconstruct the original dataset.

DLN can also be used for predictive analysis. The last step of a DLN will use an activation function to generate output represented...