Book Image

Hands-On Artificial Intelligence for IoT - Second Edition

By : Amita Kapoor
Book Image

Hands-On Artificial Intelligence for IoT - Second Edition

By: Amita Kapoor

Overview of this book

There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence.
Table of Contents (20 chapters)
Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
Index

Logistic regression for classification


In the previous section, we learned how to predict. There's another common task in ML: the task of classification. Separating dogs from cats and spam from not spam, or even identifying the different objects in a room or scene—all of these are classification tasks. 

Logistic regression is an old classification technique. It provides the probability of an event taking place, given an input value. The events are represented as categorical dependent variables, and the probability of a particular dependent variable being 1 is given using the logit function:

 

Before going into the details of how we can use logistic regression for classification, let's examine the logit function (also called the sigmoid function because of its S-shaped curve). The following diagram shows thelogit function and its derivative varies with respect to the input X, the Sigmoidal function (blue) and its derivative (orange):

A few important things to note from this diagram are the following...