Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

Computer Vision


To understand computer vision, let's first understand what human vision is. Human vision is the ability of the human eye and brain to see and recognize objects. Computer vision is the process of giving a machine a similar, if not better, understanding of seeing and identifying objects in the real world. It is fairly simple for a human eye to precisely identify whether an animal is a tiger or a lion. But it takes a lot of training for a computer system to understand such objects distinctly. Computer vision can also be defined as building mathematical models that can mimic the function of a human eye and brain. Basically, it is about training computers to understand and process images and videos.

Computer vision is an integral part of many cutting-edge areas of robotics: health care and medical (X-ray, MRI scans, CT scans, and so on), drones, self-driving cars, sports and recreation, and so on. Almost all business need computer vision to run successfully. Imagine the large amount...