Book Image

Blender 3D Printing Essentials

Book Image

Blender 3D Printing Essentials

Overview of this book

Like computing, 3D printing has been around for decades but it was expensive and was only used for making complex prototypes. Now, prices have dropped and third-party printing services such as Shapeways have become available, making the technology available to everyone.Blender is an open source modeling and animation program popular in the 3D printing community. 3D printing demands more of a modeler than animation or virtual reality. The model maker must engineer their model to work in the real world. They must keep in mind the particular needs of the materials and printers that they are planning to use to print their model. This practical guide gives Blender users all the information they need to design high-quality 3D printed objects. With a solid exploration of the 3D modeling process, design considerations for 3D printing, plus step-by-step exercises, you will soon be comfortable making 3D objects for real-world enjoyment. Starting with an overview of 3D printing, this guide moves onto to precision measurement, fixing problems in a 3D model, and how to make it light and strong enough for real-world use.You will learn how to scale, build, and detail a model for a 3D printer. You will learn to color and decorate it, as well as making parts precisely in the size you want them, so that multi-part objects fit together smoothly. You will also learn tips on saving money when you have printed your model.With the help of this guide, you will be able to complete your project and learn how to export the file so it is ready for a variety of 3D printers.
Table of Contents (12 chapters)

Types of 3D printers

So what kinds of printers are there? How do they print and how are they different? The terminology is still a bit confusing. The American Society for Testing and Materials (ASTM International) recently came up with the following categories:

  • Material extrusion is also known as Molten Polymer Deposition (MPD), Fused Deposition Modeling (FDM), or Fused Filament Fabrication (FFF); these extrude a gooey material out in layers to build up the proper shape. This is the class of printers that includes most hobbyist 3D printers. They work like the simulator you just used. These can use plastic, metal wire, wax, sugar, frosting, chocolate, cookie dough pasta, pizza, and even corn chips.

  • Material jetting is also known as photopolymer jetting. Like an inkjet, this printer squirts liquid photopolymers at the right moment, which are cured immediately with ultraviolet light, layer by layer. The object being built is supported by a layer of gel that is also applied by the print head, so overhang is not a problem.

  • Binder jetting uses a two part system. A thin layer of composite material is spread across the print bed. Then, an inkjet-like printing head sprays a binder fluid and possibly colored ink, which combine with the composite material to produce solid colored and sometimes textured objects. This can be plastic, gypsum, or metals, such as copper, tungsten, bronze, and stainless steel. For metals, a second step is needed to make them solid. The binder is removed and metal is infused where the binder used to be.

  • Sheet lamination printers may use materials, such as paper or metal, and will color, cut out, and glue layers together into objects.

  • Vat photopolymerization is also called Stereolithography (SLA). Photopolymerization printers use light to cure liquid material into the right shape. This process uses resins, wax, or liquid plastics for the material. It may use a laser or a high resolution DLP video projector similar to one you would hook up to your computer to give a PowerPoint presentation.

  • Powder bed fusion is also known as Granular Materials Binding. These printers use a laser or heat to fuse layers of powder into the right shape. These can use metal, ceramic, gypsum, or plastic powder. There are several subtypes of powder bed fusion printers.

  • Selective Laser Sintering (SLS) is used with thermoplastics, wax, and ceramic powders. A thin coat of powder is spread across the printing bed. Then, the printing head prints the layer by fusing selected areas with the laser. The printing bed then drops down. Another coat of powder is added and the laser prints the next layer.

  • Selective heat sintering (SHS) uses heat instead of a laser and can be used with thermoplastic powder.

  • Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is a subcategory of selective laser sintering. The laser beam melts the metal and makes solid parts with metal alloys like aluminum, iron, stainless steel, maraging steel, nickel, chromium, cobalt, and titanium alloys. In theory, it can be used with most alloys.

  • Directed energy deposition, also known as Electron Beam Melting (EBM), is similar to SLS, but uses an electron beam instead of a laser. The high heat generated by the electron beam allows use of pure metal powder such as titanium alloys, and can make high-detail, high-strength objects that do not need any postmanufacturing heat treatment.

Question: Earlier, I mentioned a company named Made In Space, which is making a 3D printer to be used in zero gravity. What kind of printer is it making?

  1. Directed energy deposition

  2. Vat photopolymerization

  3. Material extrusion

  4. Powder bed fusion

Answer: Option 3, material extrusion is correct. Extruding a material avoids liquid or powder floating around in zero gravity.