Book Image

Python Network Programming

By : Abhishek Ratan, Eric Chou, Pradeeban Kathiravelu, Dr. M. O. Faruque Sarker
Book Image

Python Network Programming

By: Abhishek Ratan, Eric Chou, Pradeeban Kathiravelu, Dr. M. O. Faruque Sarker

Overview of this book

This Learning Path highlights major aspects of Python network programming such as writing simple networking clients, creating and deploying SDN and NFV systems, and extending your network with Mininet. You’ll also learn how to automate legacy and the latest network devices. As you progress through the chapters, you’ll use Python for DevOps and open source tools to test, secure, and analyze your network. Toward the end, you'll develop client-side applications, such as web API clients, email clients, SSH, and FTP, using socket programming. By the end of this Learning Path, you will have learned how to analyze a network's security vulnerabilities using advanced network packet capture and analysis techniques. This Learning Path includes content from the following Packt products: • Practical Network Automation by Abhishek Ratan • Mastering Python Networking by Eric Chou • Python Network Programming Cookbook, Second Edition by Pradeeban Kathiravelu, Dr. M. O. Faruque Sarker
Table of Contents (30 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Chapter 6. APIs and Intent-Driven Networking

In Chapter 5, Low-Level Network Device Interactions, we looked at ways to interact with the network devices using Pexpect and Paramiko. Both of these tools use a persistent session that simulates a user typing in commands as if they are sitting in front of a Terminal. This works fine up to a point. It is easy enough to send commands over for execution on the device and capture the output. However, when the output becomes more than a few lines of characters, it becomes difficult for a computer program to interpret the output. The returned output from Pexpect and Paramiko is a series of characters meant to be read by a human being. The structure of the output consists of lines and spaces that are human-friendly but difficult to be understood by computer programs. 

In order for our computer programs to automate many of the tasks we want to perform, we need to interpret the returned results and make follow-up actions based on the returned results....