Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning Predictive Analytics with R
  • Table Of Contents Toc
Learning Predictive Analytics with R

Learning Predictive Analytics with R

By : Eric Mayor
3 (2)
close
close
Learning Predictive Analytics with R

Learning Predictive Analytics with R

3 (2)
By: Eric Mayor

Overview of this book

This book is packed with easy-to-follow guidelines that explain the workings of the many key data mining tools of R, which are used to discover knowledge from your data. You will learn how to perform key predictive analytics tasks using R, such as train and test predictive models for classification and regression tasks, score new data sets and so on. All chapters will guide you in acquiring the skills in a practical way. Most chapters also include a theoretical introduction that will sharpen your understanding of the subject matter and invite you to go further. The book familiarizes you with the most common data mining tools of R, such as k-means, hierarchical regression, linear regression, association rules, principal component analysis, multilevel modeling, k-NN, Naïve Bayes, decision trees, and text mining. It also provides a description of visualization techniques using the basic visualization tools of R as well as lattice for visualizing patterns in data organized in groups. This book is invaluable for anyone fascinated by the data mining opportunities offered by GNU R and its packages.
Table of Contents (18 chapters)
close
close
15
A. Exercises and Solutions
17
Index

Chapter 4. Cluster Analysis

Unsupervised cluster analysis refers to algorithms that aim at producing homogeneous groups of cases from unlabeled data. The algorithm doesn't know beforehand what the membership to the groups is, and its goal is to find the structure of the data from similarities (or differences) between the cases; a cluster is a group of cases, observations, individuals, or other units, that are similar to each other on the considered characteristics. These characteristics can be anything measurable or observable. The choice of characteristics, or attributes, is important as different attributes will lead to different clusters.

In this chapter, we will discuss the following topics:

  • Distance measures
  • Partition clustering with k-means, including the steps in the computations of clusters, and the selection of the best number of clusters
  • Applications of k-means clustering

Clustering algorithms use distance measures between the cases in order to create these homogeneous...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learning Predictive Analytics with R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon