Book Image

Data Acquisition using LabVIEW

By : Behzad Ehsani
Book Image

Data Acquisition using LabVIEW

By: Behzad Ehsani

Overview of this book

NI LabVIEW's intuitive graphical interface eliminates the steep learning curve associated with text-based languages such as C or C++. LabVIEW is a proven and powerful integrated development environment to interact with measurement and control hardware, analyze data, publish results, and distribute systems. This hands-on tutorial guide helps you harness the power of LabVIEW for data acquisition. This book begins with a quick introduction to LabVIEW, running through the fundamentals of communication and data collection. Then get to grips with the auto-code generation feature of LabVIEW using its GUI interface. You will learn how to use NI-DAQmax Data acquisition VIs, showing how LabVIEW can be used to appropriate a true physical phenomenon (such as temperature, light, and so on) and convert it to an appropriate data type that can be manipulated and analyzed with a computer. You will also learn how to create Distribution Kit for LabVIEW, acquainting yourself with various debugging techniques offered by LabVIEW to help you in situations where bugs are not letting you run your programs as intended. By the end of the book, you will have a clear idea how to build your own data acquisition system independently and much more.
Table of Contents (18 chapters)
Data Acquisition Using LabVIEW
Credits
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com
Preface
9
Alternate Software for DAQ

Chapter 4. DAQ Programming Using LabVIEW

In Chapter 3, Using the DAQ Assistant to Automatically Generate LabVIEW Code, we used an automated version of data acquisition. That was a quick and simple way for us to demo the power and some of the capabilities of LabVIEW. Needless to say, hardly any real-life situation is that simple and straightforward. In this chapter, we will formally define "data acquisition" and transform real-life phenomena such as voltage, light, temperature, and humidity, and transform the data such that it is understandable by a computer. In this chapter, we will use a Tektronix TDS 2022 scope and a Korad programmable power supply.