Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Apache Mahout Essentials
  • Table Of Contents Toc
Apache Mahout Essentials

Apache Mahout Essentials

By : Jayani Withanawasam
3.7 (3)
close
close
Apache Mahout Essentials

Apache Mahout Essentials

3.7 (3)
By: Jayani Withanawasam

Overview of this book

If you are a Java developer or data scientist, haven't worked with Apache Mahout before, and want to get up to speed on implementing machine learning on big data, then this is the perfect guide for you.
Table of Contents (8 chapters)
close
close
7
Index

Machine learning in a nutshell

 

"Machine learning is the most exciting field of all the computer sciences. Sometimes I actually think that machine learning is not only the most exciting thing in computer science, but also the most exciting thing in all of human endeavor."

 
 --Andrew Ng, Associate Professor at Stanford and Chief Scientist of Baidu

Giving a detailed explanation of machine learning is beyond the scope of this book. For this purpose, there are other excellent resources that I have listed here:

  • Machine Learning by Andrew Ng at Coursera (https://www.coursera.org/course/ml)
  • Foundations of Machine Learning (Adaptive Computation and Machine Learning series) by Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker

However, basic machine learning concepts are explained very briefly here, for those who are not familiar with it.

Machine learning is an area of artificial intelligence that focuses on learning from the available data to make predictions on unseen data without explicit programming.

To solve real-world problems using machine learning, we first need to represent the characteristics of the problem domain using features.

Features

A feature is a distinct, measurable, heuristic property of the item of interest being perceived. We need to consider the features that have the greatest potential in discriminating between different categories.

Supervised learning versus unsupervised learning

Let's explain the difference between supervised learning and unsupervised learning using a simple example of pebbles:

Supervised learning versus unsupervised learning
  • Supervised learning: Take a collection of mixed pebbles, as given in the preceding figure, and categorize (label) them as small, medium, and large pebbles. Examples of supervised learning are regression and classification.
  • Unsupervised learning: Here, just group them based on similar sizes but don't label them. An example of unsupervised learning is clustering.

For a machine to perform learning tasks, it requires features such as the diameter and weight of each pebble.

This book will cover how to implement the following machine learning techniques using Apache Mahout:

  • Clustering
  • Classification and regression
  • Recommendations
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Apache Mahout Essentials
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon