Book Image

Learning Predictive Analytics with Python

By : Ashish Kumar, Gary Dougan
Book Image

Learning Predictive Analytics with Python

By: Ashish Kumar, Gary Dougan

Overview of this book

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You’ll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.
Table of Contents (19 chapters)
Learning Predictive Analytics with Python
Credits
Foreword
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com
Preface
A List of Links
Index

The read_csv method


The name of the method doesn't unveil its full might. It is a kind of misnomer in the sense that it makes us think that it can be used to read only CSV files, which is not the case. Various kinds of files, including .txt files having delimiters of various kinds can be read using this method.

Let's learn a little bit more about the various arguments of this method in order to assess its true potential. Although the read_csv method has close to 30 arguments, the ones listed in the next section are the ones that are most commonly used.

The general form of a read_csv statement is something similar to:

pd.read_csv(filepath, sep=', ', dtype=None, header=None, skiprows=None, index_col=None, skip_blank_lines=TRUE, na_filter=TRUE)

Now, let us understand the significance and usage of each of these arguments one by one:

  • filepath: filepath is the complete address of the dataset or file that you are trying to read. The complete address includes the address of the directory in which the...