Book Image

R Machine Learning By Example

By : Raghav Bali
Book Image

R Machine Learning By Example

By: Raghav Bali

Overview of this book

Data science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems. This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems. You’ll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms. Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R.
Table of Contents (15 chapters)
R Machine Learning By Example
About the Authors
About the Reviewer

Chapter 5. Credit Risk Detection and Prediction – Descriptive Analytics

In the last two chapters, you saw some interesting problems revolving around the retail and e-commerce domains. You now know how to detect and predict shopping trends from shopping patterns as well as how to build recommendation systems. If you remember from Chapter 1, Getting started with R and Machine Learning that the applications of machine learning are diverse, we can apply the same concepts and techniques to solve a wide variety of problems in the real world. We will be tackling a completely new problem here, but hold on to what you have learnt because several concepts you learnt previously will come in handy soon!

In the next couple of chapters, we will be tackling a new problem related to the financial domain. We will be looking at the bank customers of a particular German bank who could be credit risks for the bank, based on some data that has been previously collected. We will perform descriptive and exploratory...