Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Python for Finance
  • Table Of Contents Toc
Mastering Python for Finance

Mastering Python for Finance

3.3 (7)
close
close
Mastering Python for Finance

Mastering Python for Finance

3.3 (7)

Overview of this book

If you are an undergraduate or graduate student, a beginner to algorithmic development and research, or a software developer in the financial industry who is interested in using Python for quantitative methods in finance, this is the book for you. It would be helpful to have a bit of familiarity with basic Python usage, but no prior experience is required.
Table of Contents (12 chapters)
close
close
11
Index

Preface

Python is widely practiced in various sectors of finance, such as banking, investment management, insurance, and even real estate, for building tools that help in financial modeling, risk management, and trading. Even big financial corporations embrace Python to build their infrastructure for position management, pricing, risk management, and trading systems.

Throughout this book, theories from academic financial studies will be introduced, accompanied by their mathematical concepts to help you understand their uses in practical situations. You will see how Python is applied to classical pricing models, linearity, and nonlinearity of finance, numerical procedures, and interest rate models, that form the foundations of complex financial models. You will learn about the root-finding methods and finite difference pricing for developing an implied volatility curve with options.

With the advent of advanced computing technologies, methods for the storing and handling of massive amounts of data have to be considered. Hadoop is a popular tool in big data. You will be introduced to the inner workings of Hadoop and its integration with Python to derive analytical insights on financial data. You will also understand how Python supports the use of NoSQL for storing non-structured data.

Many brokerage firms are beginning to offer APIs to customers to trade using their own customized trading software. Using Python, you will learn how to connect to a broker API, retrieve market data, generate trading signals, and send orders to the exchange. The implementation of the mean-reverting and trend-following trading strategies will be covered. Risk management, position tracking, and backtesting techniques will be discussed to help you manage the performance of your trading strategies.

The use of Microsoft Excel is pervasive in the financial industry, from bond trading to back-office operations. You will be taught how to create numerical pricing Component Object Model (COM) servers in Python that will enable your spreadsheets to compute and update model values on the fly.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Python for Finance
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon