Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Test Driven Machine Learning
  • Table Of Contents Toc
Test Driven Machine Learning

Test Driven Machine Learning

By : Justin Bozonier
3 (3)
close
close
Test Driven Machine Learning

Test Driven Machine Learning

3 (3)
By: Justin Bozonier

Overview of this book

Machine learning is the process of teaching machines to remember data patterns, using them to predict future outcomes, and offering choices that would appeal to individuals based on their past preferences. Machine learning is applicable to a lot of what you do every day. As a result, you can’t take forever to deliver your first iteration of software. Learning to build machine learning algorithms within a controlled test framework will speed up your time to deliver, quantify quality expectations with your clients, and enable rapid iteration and collaboration. This book will show you how to quantifiably test machine learning algorithms. The very different, foundational approach of this book starts every example algorithm with the simplest thing that could possibly work. With this approach, seasoned veterans will find simpler approaches to beginning a machine learning algorithm. You will learn how to iterate on these algorithms to enable rapid delivery and improve performance expectations. The book begins with an introduction to test driving machine learning and quantifying model quality. From there, you will test a neural network, predict values with regression, and build upon regression techniques with logistic regression. You will discover how to test different approaches to naïve bayes and compare them quantitatively, along with how to apply OOP (Object-Oriented Programming) and OOP patterns to test-driven code, leveraging SciKit-Learn. Finally, you will walk through the development of an algorithm which maximizes the expected value of profit for a marketing campaign by combining one of the classifiers covered with the multiple regression example in the book.
Table of Contents (11 chapters)
close
close
2
2. Perceptively Testing a Perceptron
10
Index

Chapter 1. Introducing Test-Driven Machine Learning

This book will show you how to develop complex software (sometimes rooted in randomness) in small, controlled steps . It will also instruct you in how to begin developing solutions to machine learning problems using test-driven development (from here, this will be written as TDD). Mastering TDD is not something this book will achieve. Instead, this book will help you begin your journey and expose you to guiding principles, which you can use to creatively solve challenges as you encounter them.

We will answer the following three questions in this chapter:

  • What are TDD and BDD (behavior-driven development)?
  • How do we apply these concepts to machine learning, and make inferences and predictions?
  • How does this work in practice?

After gaining answers to these questions, we will be ready to move on to tackling real problems. This book is about applying these concepts to solve machine learning problems. This chapter contains the largest theoretical explanation that we will see in the book, with the remainder of the theory being described by example.

Due to the focus on application, you will learn much more than simply the theory of TDD and BDD. However, there are aspects of practices that this book will not touch on. To read more about the theory and ideas, search the Internet for articles written by the following:

  • Kent Beck—The father of TDD
  • Dan North—The father of BDD
  • Martin Fowler—The father of refactoring. He has also created a large knowledge base on these topics
  • James Shore—One of the authors of The Art of Agile Development, who has a deep theoretical understanding of TDD, and explains the practical value of it quite well

These concepts are incredibly simple and yet can take a lifetime to master. When applied to machine learning, we must find new ways to control and/or measure the random processes inherent in the algorithm. This will come up in this chapter as well as others. In the next section, we will develop a foundation for TDD and begin to explore its application.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Test Driven Machine Learning
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon