Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying R Data Science Essentials
  • Table Of Contents Toc
R Data Science Essentials

R Data Science Essentials

By : Koushik, Kumar Ravindran
3 (3)
close
close
R Data Science Essentials

R Data Science Essentials

3 (3)
By: Koushik, Kumar Ravindran

Overview of this book

With organizations increasingly embedding data science across their enterprise and with management becoming more data-driven it is an urgent requirement for analysts and managers to understand the key concept of data science. The data science concepts discussed in this book will help you make key decisions and solve the complex problems you will inevitably face in this new world. R Data Science Essentials will introduce you to various important concepts in the field of data science using R. We start by reading data from multiple sources, then move on to processing the data, extracting hidden patterns, building predictive and forecasting models, building a recommendation engine, and communicating to the user through stunning visualizations and dashboards. By the end of this book, you will have an understanding of some very important techniques in data science, be able to implement them using R, understand and interpret the outcomes, and know how they helps businesses make a decision.
Table of Contents (10 chapters)
close
close
9
Index

Chapter 6. Time Series Forecasting

Forecasting is the process of predicting future events based on historic data. When forecasting is made on a time series data, such as events happening over a time interval, then it is called time series forecasting.

The time series forecasting can be implemented in multiple ways; it can be a simple moving average of the historic values or it can be built considering the factors such as the seasonality component and trend component. The seasonality component is one that has a cyclic behavior and repeats over a fixed time interval, whereas a trend component is generally short-lived and a gradual change that can move the value either upward or downward.

Time series forecasting has been in use across multiple industries for quite some time; it is commonly used for sales forecasting so that the raw material can be procured accordingly. The famous example for forecasting is weather forecasting, where based on the pattern in the past and recent changes...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
R Data Science Essentials
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon