Book Image

Designing Machine Learning Systems with Python

By : David Julian
Book Image

Designing Machine Learning Systems with Python

By: David Julian

Overview of this book

Machine learning is one of the fastest growing trends in modern computing. It has applications in a wide range of fields, including economics, the natural sciences, web development, and business modeling. In order to harness the power of these systems, it is essential that the practitioner develops a solid understanding of the underlying design principles. There are many reasons why machine learning models may not give accurate results. By looking at these systems from a design perspective, we gain a deeper understanding of the underlying algorithms and the optimisational methods that are available. This book will give you a solid foundation in the machine learning design process, and enable you to build customised machine learning models to solve unique problems. You may already know about, or have worked with, some of the off-the-shelf machine learning models for solving common problems such as spam detection or movie classification, but to begin solving more complex problems, it is important to adapt these models to your own specific needs. This book will give you this understanding and more.
Table of Contents (16 chapters)
Designing Machine Learning Systems with Python
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Free Chapter
1
Thinking in Machine Learning
Index

Chapter 5. Linear Models

Linear models are one of the most widely used models and form the foundation of many advanced nonlinear techniques such as support vector machines and neural networks. They can be applied to any predictive task such as classification, regression, or probability estimation.

When responding to small changes in the input data, and provided that our data consists of entirely uncorrelated features, linear models tend to be more stable than tree models. As we mentioned in the last chapter, tree models can over-respond to small variations in training data. This is because splits at the root of a tree have consequences that are not recoverable further down the line, that is, producing different branching and potentially making the rest of the tree significantly different. Linear models on the other hand are relatively stable, being less sensitive to initial conditions. However, as you would expect, this has the opposite effect, changing less sensitive data to nuanced data...