Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of. To send us general feedback, simply e-mail [email protected], and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.
-
Book Overview & Buying
-
Table Of Contents
Practical Predictive Analytics
By :
Practical Predictive Analytics
By:
Overview of this book
This is the go-to book for anyone interested in the steps needed to develop predictive analytics solutions with examples from the world of marketing, healthcare, and retail. We'll get started
with a brief history of predictive analytics and learn about different roles and functions people play within a predictive analytics project. Then, we will learn about various ways of installing R along with their pros and cons, combined with a step-by-step installation of RStudio,
and a description of the best practices for organizing your projects.
On completing the installation, we will begin to acquire the skills necessary to input, clean, and prepare your data for modeling. We will learn the six specific steps needed to implement and
successfully deploy a predictive model starting from asking the right questions through model development and ending with deploying your predictive model into production. We will learn why
collaboration is important and how agile iterative modeling cycles can increase your chances of developing and deploying the best successful model.
We will continue your journey in the cloud by extending your skill set by learning about Databricks and SparkR, which allow you to develop predictive models on vast gigabytes of data.
Table of Contents (13 chapters)
Preface
Getting Started with Predictive Analytics
The Modeling Process
Inputting and Exploring Data
Introduction to Regression Algorithms
Introduction to Decision Trees, Clustering, and SVM
Using Survival Analysis to Predict and Analyze Customer Churn
Using Market Basket Analysis as a Recommender Engine
Exploring Health Care Enrollment Data as a Time Series
Introduction to Spark Using R
Exploring Large Datasets Using Spark
Spark Machine Learning - Regression and Cluster Models
Spark Models – Rule-Based Learning