-
Book Overview & Buying
-
Table Of Contents
Machine Learning for the Web
By :
This method is based on a theorem that states that a matrix X d x N can be decomposed as follows:

Here:
In our case, X can be composed by the feature's vectors
, where each
is a column. We can reduce the number of dimensions of each feature vector d, approximating the singular value decomposition. In practice, we consider only the largest singular values
so that:

t represents the dimension of the new reduced space where the feature vectors are projected. A vector x(i) is transformed in the new space using the following formula:

This means that the matrix
(not
) represents the feature vectors in the t dimensional space.
Note that it is possible to show that this method is very similar to the PCA; in fact, the scikit-learn library uses SVD to implement PCA.