Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Large Scale Machine Learning with Python
  • Table Of Contents Toc
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

By : Sjardin, Luca Massaron , Alberto Boschetti
4 (3)
close
close
Large Scale Machine Learning with Python

Large Scale Machine Learning with Python

4 (3)
By: Sjardin, Luca Massaron , Alberto Boschetti

Overview of this book

Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python.
Table of Contents (12 chapters)
close
close
11
Index

GPU computing

When we use regular CPU computing packages for machine learning, such as Scikit-learn, the amount of parallelization is surprisingly limited because, by default, an algorithm utilizes only one core even when there are multiple cores available. In the chapter about Classification and Regression Trees (CART), we will see some advanced examples of speeding up Scikit-learn algorithms.

Unlike CPU, GPU units are designed to work in parallel from the ground up. Imagine projecting an image on a screen through a graphical card; it will come as no surprise that the GPU unit has to be able to process and project a lot of information (motion, color, and spatiality) at the same time. CPUs on the other hand are designed for sequential processing suitable for tasks where more control is needed, such as branching and checking. In contrast to the CPU, GPUs are composed of lots of cores that can handle thousands of tasks simultaneously. The GPU can outperform a CPU 100-fold at a lower cost...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Large Scale Machine Learning with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon