Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By : Cyrille Rossant
Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (19 chapters)
IPython Interactive Computing and Visualization CookbookSecond Edition
Contributors
Preface
Index

Using Python to write faster code


The first way to make Python code run faster is to know all features of the language. Python brings many syntax features and modules in the standard library that run much faster than anything you could write by hand. Moreover, although Python may be slow if you write in Python like you would write in C or Java, it is often fast enough when you write Pythonic code.

In this section, we show how badly-written Python code can be significantly improved when using all the features of the language.

Note

Leveraging NumPy for efficient array operations is of course another possibility that we explored in the Introducing the multidimensional array in NumPy for fast array computations recipe in Chapter 1, A Tour of Interactive Computing with Jupyter and IPython. This recipe focuses on cases where, for one reason or another, depending on and using NumPy is not a possible or desirable option. For example, operations on dictionaries, graphs, or text may be easier to write...