Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Big Data Analytics with R
  • Table Of Contents Toc
Big Data Analytics with R

Big Data Analytics with R

By : Walkowiak
4.4 (8)
close
close
Big Data Analytics with R

Big Data Analytics with R

4.4 (8)
By: Walkowiak

Overview of this book

Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O.
Table of Contents (10 chapters)
close
close

Chapter 3. Unleashing the Power of R from Within

In the first chapter we introduced you to a number of general terms and concepts related to Big Data. In Chapter 2, Introduction to R Programming Language and Statistical Environment, we presented you with several frequently used methods for data management, processing, and analysis using the R language and its statistical environment. In this chapter we will merge both topics and attempt to explain how you can use powerful mathematical and data modeling R packages in large datasets, without the need for distributed computing. After reading this chapter you should be able to:

  • Understand R's traditional limitations for Big Data analytics and how they can be resolved
  • Use R packages such as ff, ffbase, ffbase2, and bigmemory to enhance out-of-memory performance
  • Apply statistical methods to large R objects through the biglm and ffbase packages
  • Enhance the speed of data processing with R libraries supporting parallel computing...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Big Data Analytics with R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon