Book Image

Python Social Media Analytics

By : Baihaqi Siregar, Siddhartha Chatterjee, Michal Krystyanczuk
Book Image

Python Social Media Analytics

By: Baihaqi Siregar, Siddhartha Chatterjee, Michal Krystyanczuk

Overview of this book

Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes.
Table of Contents (17 chapters)
Title Page
Credits
About the Authors
Acknowledgments
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Basic cleaning techniques


Social media contains different types of data: information about user profiles, statistics (number of likes or number of followers), verbatims, and media. Quantitative data is very convenient for an analysis using statistical and numerical methods, but unstructured data such as user comments is much more challenging. To get meaningful information, one has to perform the whole process of information retrieval. It starts with the definition of the data type and data structure. On social media, unstructured data is related to text, images, videos, and sound and we will mostly deal with textual data. Then, the data has to be cleaned and normalized. Only after all these steps can we delve into the analysis.

Data type and encoding

Comments and conversation are textual data that we retrieve as strings. In brief, a string is a sequence of characters represented by code points. Every string in Python is seen as a Unicode covering the numbers from 0 through 0x10FFFF (1,114...