Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning with scikit-learn
  • Table Of Contents Toc
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn - Second Edition

By : Gavin Hackeling
5 (2)
close
close
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

5 (2)
By: Gavin Hackeling

Overview of this book

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.
Table of Contents (15 chapters)
close
close
9
From Decision Trees to Random Forests and Other Ensemble Methods

Multiple linear regression


We previously trained and evaluated a model for predicting the price of a pizza. While you are eager to demonstrate the pizza price predictor to your friends and coworkers, you are concerned by the model's imperfect R-squared score and the embarrassment its predictions could cause you. How can you improve the model?

Recalling your personal pizza-eating experience; you might have some intuitions about other attributes of a pizza that are related to its price. For instance, the price often depends on the number of toppings on the pizza. Fortunately, your pizza journal describes toppings in detail; let's add the number of toppings to our training data as a second explanatory variable. We cannot proceed with simple linear regression, but we can use a generalization of simple linear regression that can use multiple explanatory variables called multiple linear regression. Multiple linear regression is given by the following model:

Whereas simple linear regression uses...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Machine Learning with scikit-learn
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon