Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Ensemble Learning with R
  • Table Of Contents Toc
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

By : Tattar
3 (1)
close
close
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

3 (1)
By: Tattar

Overview of this book

Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy. Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models. By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.
Table of Contents (15 chapters)
close
close
12
12. What's Next?
13
A. Bibliography
14
Index

Visualization and variable reduction

In the previous section, the housing data underwent a lot of analytical pre-processing, and we are now ready to further analyze this. First, we begin with visualization. Since we have a lot of variables, the visualization on the R visual device is slightly difficult. As seen in earlier chapters, to visualize the random forests and other large, complex structures, we will initiate a PDF device and store the graphs in it. In the housing dataset, the main variable is the housing price and so we will first name the output variable SalePrice. We need to visualize the data in a way that facilitates the relationship between the numerous variables and the SalePrice. The independent variables can be either numeric or categorical. If the variables are numeric, a scatterplot will indicate the kind of relationship between the variable and the SalePrice regressand. If the independent variable is categorical/factor, we will visualize the boxplot at each level of the...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Ensemble Learning with R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon