Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Computer Vision with TensorFlow 2
  • Table Of Contents Toc
Hands-On Computer Vision with TensorFlow 2

Hands-On Computer Vision with TensorFlow 2

By : Benjamin Planche, Eliot Andres
3.3 (12)
close
close
Hands-On Computer Vision with TensorFlow 2

Hands-On Computer Vision with TensorFlow 2

3.3 (12)
By: Benjamin Planche, Eliot Andres

Overview of this book

Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0.
Table of Contents (16 chapters)
close
close
Lock Free Chapter
1
Section 1: TensorFlow 2 and Deep Learning Applied to Computer Vision
2
Computer Vision and Neural Networks
chevron up
5
Section 2: State-of-the-Art Solutions for Classic Recognition Problems
6
Influential Classification Tools
9
Section 3: Advanced Concepts and New Frontiers of Computer Vision
10
Training on Complex and Scarce Datasets

Supervised learning

Supervised learning may be the most common paradigm, and it is certainly the easiest to grasp. It applies when we want to teach neural networks a mapping between two modalities (for example, mapping images to their class labels or to their semantic masks). It requires access to a training dataset containing both the images and their ground truth labels (such as the class information per image or the semantic masks).

With this, the training is then straightforward:

  • Give the images to the network and collect its results (that is, predicted labels).
  • Evaluate the network's loss, that is, how wrong its predictions are when comparing it to the ground truth labels.
  • Adjust the network parameters accordingly to reduce this loss.
  • Repeat until the network converges, that is, until it cannot improve further on this training data.

Therefore, this strategy deserves the adjective supervised—an entity (us) supervises the training of the network by providing it with...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Computer Vision with TensorFlow 2
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon