Book Image

Hands-On Computer Vision with TensorFlow 2

By : Benjamin Planche, Eliot Andres
Book Image

Hands-On Computer Vision with TensorFlow 2

By: Benjamin Planche, Eliot Andres

Overview of this book

Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0.
Table of Contents (16 chapters)
Free Chapter
1
Section 1: TensorFlow 2 and Deep Learning Applied to Computer Vision
5
Section 2: State-of-the-Art Solutions for Classic Recognition Problems
9
Section 3: Advanced Concepts and New Frontiers of Computer Vision
14
Assessments

Section 2: State-of-the-Art Solutions for Classic Recognition Problems

In this section, you will discover and apply modern methods to solve a variety of problems. Classification, a canonical machine learning task, will serve as a great example to introduce up-to-date neural network architectures (such as Inception and ResNet) and transfer learning. Object detection, useful for self-driving cars and other robots, will serve to illustrate the trade-off between speed and accuracy through the comparison of two widely used algorithms—YOLO and Faster R-CNN. Finally, building upon the two previous chapters, the final chapter in this section ends with an in-depth presentation of encoder-decoder networks applied to image denoising and semantic segmentation.

The following chapters will be covered in this section: