Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Reinforcement Learning with Python
  • Table Of Contents Toc
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

By : Sudharsan Ravichandiran
2.6 (18)
close
close
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

2.6 (18)
By: Sudharsan Ravichandiran

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.
Table of Contents (16 chapters)
close
close

Multi-Armed Bandit Problem

In the previous chapters, we have learned about fundamental concepts of reinforcement learning (RL) and several RL algorithms, as well as how RL problems can be modeled as the Markov Decision Process (MDP). We have also seen different model-based and model-free algorithms that are used to solve the MDP. In this chapter, we will see one of the classical problems in RL called the multi-armed bandit (MAB) problem. We will see what the MAB problem is and how to solve the problem with different algorithms followed by how to identify the correct advertisement banner that will receive most of the clicks using MAB. We will also learn about contextual bandit that is widely used for building recommendation systems.

In the chapter, you will learn about the following:

  • The MAB problem
  • The epsilon-greedy algorithm
  • The softmax exploration algorithm
  • The upper confidence...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Reinforcement Learning with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon