Book Image

Mastering Blockchain. - Second Edition

By : Imran Bashir
Book Image

Mastering Blockchain. - Second Edition

By: Imran Bashir

Overview of this book

Publisher's Note: This edition from 2018 is outdated and does not cover the latest insights on consensus algorithms, Ethereum 2.0, tokenization, and enterprise blockchains. A new and updated edition of this book that includes all the newest developments and improvements in Blockchain including the above topics is now available. A blockchain is a distributed ledger that is replicated across multiple nodes and enables immutable, transparent and cryptographically secure record-keeping of transactions. The blockchain technology is the backbone of cryptocurrencies, and it has applications in finance, government, media and almost all other industries. Mastering Blockchain, Second Edition has been thoroughly updated and revised to provide a detailed description of this leading technology and its implementation in the real world. This book begins with the technical foundations of blockchain technology, teaching you the fundamentals of distributed systems, cryptography and how it keeps data secure. You will learn about the mechanisms behind cryptocurrencies and how to develop applications using Ethereum, a decentralized virtual machine. You will also explore different other blockchain solutions and get an introduction to business blockchain frameworks under Hyperledger, a collaborative effort for the advancement of blockchain technologies hosted by the Linux Foundation. You will also be shown how to implement blockchain solutions beyond currencies, Internet of Things with blockchain, blockchain scalability, and the future scope of this fascinating and powerful technology.
Table of Contents (21 chapters)
14
Introducing Web3
17
Blockchain – Outside of Currencies
18
Scalability and Other Challenges

Public and private keys

A private key, as the name suggests, is a randomly generated number that is kept secret and held privately by its users. Private keys need to be protected and no unauthorized access should be granted to that key; otherwise, the whole scheme of public key cryptography is jeopardized, as this is the key that is used to decrypt messages. Private keys can be of various lengths depending on the type and class of algorithms used. For example, in RSA, typically a key of 1024-bits or 2048-bits is used. The 1024-bit key size is no longer considered secure, and at least a 2048-bit key size is recommended.

A public key is freely available and published by the private key owner. Anyone who would then like to send the publisher of the public key an encrypted message can do so by encrypting the message using the published public key and sending it to the holder of the...