Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering pandas
  • Table Of Contents Toc
Mastering pandas

Mastering pandas - Second Edition

By : Kumar
close
close
Mastering pandas

Mastering pandas

By: Kumar

Overview of this book

pandas is a popular Python library used by data scientists and analysts worldwide to manipulate and analyze their data. This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains. An update to our highly successful previous edition with new features, examples, updated code, and more, this book is an in-depth guide to get the most out of pandas for data analysis. Designed for both intermediate users as well as seasoned practitioners, you will learn advanced data manipulation techniques, such as multi-indexing, modifying data structures, and sampling your data, which allow for powerful analysis and help you gain accurate insights from it. With the help of this book, you will apply pandas to different domains, such as Bayesian statistics, predictive analytics, and time series analysis using an example-based approach. And not just that; you will also learn how to prepare powerful, interactive business reports in pandas using the Jupyter notebook. By the end of this book, you will learn how to perform efficient data analysis using pandas on complex data, and become an expert data analyst or data scientist in the process.
Table of Contents (21 chapters)
close
close
Lock Free Chapter
1
Section 1: Overview of Data Analysis and pandas
4
Section 2: Data Structures and I/O in pandas
7
Section 3: Mastering Different Data Operations in pandas
12
Section 4: Going a Step Beyond with pandas

Plotting using matplotlib

This section provides a brief introduction to plotting in pandas using matplotlib. The matplotlib API is imported using the standard convention, as shown in the following command:

In [1]: import matplotlib.pyplot as plt 

Series and DataFrame have a plot method, which is simply a wrapper around plt.plot. Here, we will examine how we can do a simple plot of a sine and cosine function. Suppose we wished to plot the following functions over the interval pi to pi:

  • f(x) = cos(x) + sin (x)
  • g(x) = cos (x) - sin (x)

This gives the following interval:

    In [51]: import numpy as np
    In [52]: X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
    
    In [54]: f,g = np.cos(X)+np.sin(X), np.sin(X)-np.cos(X)
    In [61]: f_ser=pd.Series(f)
             g_ser=pd.Series(g)
    
    
    In [31]: plotDF=pd.concat([f_ser,g_ser],axis=1)
             plotDF.index=X...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering pandas
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon